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https://www.forbes.com/sites/technology/article/ai-text-generators/
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" Simplify,
| am the Chief Information
Officer and don’t want to be
the Chief Integration Officer.”

Every CIO, Every Enterprise



! Microsoft Fabric
The unified data platform for the era of Al
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Demo time !

Build a model to predict bank customer churn

The churn rate, also known as the rate of attrition refers to the rate at which bank customers stop doing business with the bank.



Al visuals

Advanced Al Visuals in Power Bl
Power Bl has 4 different Al powered visuals that are separate from the regular visuals in Power Bl They

can be accessed from the Power Bl ribbon under Insert > Al Visuals.

Poweer Bl - Al Features Dashboard - Power Bl Desktop
File Home Insert Modeling View Optimize Help
B HE = 8 |uW& %
Mew Mew  More O&A kKey  Decomposition Smart Paginated Power Power A
page ~ visual wisualsw influencers tree narrative report  Apps (pre
Sages Visuals Al visuals Powar Platform

Each one is designed to help users explore their data in different ways.

Q&A - Allows you to use plain language to ask questions about data.

Key Influencers - Helps identify factors that drive a metric of interest.

Decomposition Tree - Explore data across multiple dimensions and easily drill into details.

Smart Narrative - Summarizes data and places insights into plain language.
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Key influencers Top segments

What influences ypred_Ilgbm1_sm to  Increase

When...

Ageis 43 - 63

15 —_

.|
5 &7
. . . . T

(| isahigh new tenure linked to a high age ? =
V|2 Showing results for Maximum age sorted by new tenure and maximum age descending
..the average of 100
ypred_lgbm1_sm increases
by

0.44

Max of Age
S

0.0 0.2 0.4
NewTenure

Content created by Al may be inaccurate. Read terms Is this useful? I:ﬁ f.;!

s A

The key influencer visual presents data that focuses on age as a significant metric. The key
takeaway from the available data is that when the age is between 43 and 63, there is a
naticeable increase in the average ypred_lgbm1_sm by approximately 0.44 units, which is
higher compared to other age values. Furthermore, this particular age group comprises
around 23.10% of the total data set. The correlation between age and ypred_Igbm1_sm
can be significant for decision-making processes in business settings. 1
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Generative Al : Report

Build your first report

B Add and prepare your data - A ! . o

% Generate a premade report

F Customize to suit your nesds R

Add data to start building a report

5 3 i i

Excel (Preview) CSV (Preview) {I:Zit: or manually enter E,:ZEZFUbIIShEd semantic
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I vPred LGBM1 SM Analysis Age Al v CreditScore A
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Predictive Analytics (Machine Learning in Python)

Create, evaluate, and score a churn prediction model

Introduction

In thiz notebook, you'll see a Microsoft Fabric data science workflow with an end-to-end example. The scenario is to build a model to predict whether bank customers would churn or not. The churn

rate, also known as the rate of attrition refers to the rate at which bank customers stop doing business with the bank.

The main steps in this notebook are:

1. Install custom libraries

2. Load the data
3. Understand and process the data through exploratory data analysis and demonstrate the use of Fabric Data Wrangler feature

4. Train machine learning models using Scikit-Learn and LightGBM, and track experiments using MLflow and Fabric Autologging feature

5. Evaluate and save the final machine learning model
6. Demonstrate the model performance via visualizations in Power Bl

s Crea>Xum



Step 1: Install custom libraries

When developing a machine learning model or doing ad-hoc data analysis, you may need to quickly install a custom library (e.g.. imblearn in this notebook) for the Apache Spark session. To do this,
you have two choices.

1. ¥ou can use the in-line installation capabilities (e.g. %pip. %conda, etc.) to quickly get started with new libraries. Mote that this installation option would install the custom libraries only in the
current notebook and not in the workspace.

# Use pip to install Llibraries
¥pip install <library name:

# Use conda to install libraries
#conda install <library name:>

2. Alternatively, you can follow the instructions here to learn how to create an environment which allows you to install libraries from public sources or upload custom libraries built by you or your
organization.

For this notebook, you'll install the imblearn using %*pip install . Note that the PySpark kernel will be restarted after %pip install ., thus you'll need to install the library before you run any
other cells.

1 # Use pip to install imblearn for SMOTE
2 #pip install imblearn

~" 31 sec -Command executed in 3 sec 237 ms by Michel Asbischer on 2:08:17 PM, 3/06/24 PySpark (Python)

O CreaxXum



Step 2: Load the data

Dataset

The dataset contains churn status of 10,000 customers along with 14 attributes that include credit score, geographical location (Germany, France, Spain), gender {(male, female), age, tenure (years of
being bank's customer), account balance, estimated salary, number of products that a customer has purchased through the bank, credit card status (whether a customer has a credit card or not), and
active member status {(whether an active bank's customer or not).

The dataset also includes columns such as row number, customer ID, and customer surname that should have no impact on customer's decision to leave the bank. The event that defines the
customer’s churn is the clesing of the customer's bank account, therefore, the column exit in the dataset refers to customer’s abandonment. Since you don't have much context about these
attributes, you'll proceed without having background information about the dataset. Your aim is to understand how these attributes contribute to the exit status.

Out of the 10,000 customers, only 2037 customers (around 20%) have left the bank. Therefore, given the class imbalance ratio, it is recommended to generate synthetic data.

* churn.csv

"Customer|D” "Surname” "CreditScore™ "Geography” "Gender” "Age" “Tenure" "Balance” "NumOfProducts” "HasCrCard" "IsActiveMember” "Es

15634602 Hargrave 619 France Female 42 2 0.00 1 1 1 101

15647311 Hill 608 Spain Female 41 1 53807.86 1 0 1 112
1 C

Introduction to SMOTE

The problem with imbalanced classification is that there are too few examples of the minority class for a model to effectively learn the decision boundary. Synthetic Minority Oversampling Technigue
(SMOTE) is the most widely used approach to synthesize new samples for the minority class. Learn more about SMOTE here and here.

You will be able to access SMOTE using the imblearn library that you installed in Step 1.

— e N . ¥ L] [ ]



Step 3: Exploratory Data Analysis

Display raw data

Explore the raw data with display . do some basic statistics and show chart views. You first need to import required libraries for data visualization such as seaborn which is a Python data

visualization library to provide a high-level interface for building visuals on dataframes and arrays. Learn more about seaborn.

1 import seaborn as sns
2 sns.set theme(style="whitegrid"”, palette="table", rc = {'figure.figsize':(9,6)})
3 import matplotlib.pyplot as plt
4 import matplotlib.ticker as mticker
5 from matplotlib import rc, rcParams
6 import numpy as np
7 import pandas as pd
8 import itertools
" 12 sec -Command executed in 12 sec 144 ms by Michel Aebischer on 2:08:41 PM, 3/06/24 PySpark (Python) ™
> [E Log e

1 display(df, summary=True)
~" 3 gec -Command executed in 3 sec 584 ms by Michel Aebischer on 2:08:45 PM, 3/06/24 PySpark (Python) ™

A CreaxXum



The five-number summary

Show the five-number summary (the minimum score, first quartile, median, third quartile, the maximum score) for the numerical attributes, using box plots.

1 df_num_cols = df_clean[numeric_variables]
2 sns.set(font_scale = 8.7)
3 fig, axes = plt.subplots(nrows = 2, ncols = 3, gridspec_kw = dict(hspace=8.3}, figsize = (17,8))
4 fig.tight layout()
5 for ax,col in zip(axes.flatten(), df num_cols.columns):
6 sns.boxplot(x = df_num_cols[col], color="green’, ax = ax)
7 # fig.suptitle('visualize and compare the distribution and central tendency of numerical attributes', color = 'k", fontsize = 12)
8 fig.delaxes(axes[1,2])
9
" 1 sec -Command executed in 1 sec 520 ms by Michel Aebischer on Z:08:48 PM, 3,/06/24 PySpark (Python)
> Log

/tmp/ipykernel_7@86/2895287195.py:4: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
fig.tight_layout()

L ]
400 500 600 700 B0O 20 B0 20 [} 2 a [ B 10
CreditScore Tenure
s Cree
0 50000 100000 150000 200000 250000 0 25000 S0000 75000 100000 125000 150000 175000 200000

[ TN [y [ ¥ Ry Ry [



Distribution of exited and non-exited customers

Show the distribution of exited versus non-exited customers across the categorical attributes.

1 attr list = ['Geography', 'Gender’', 'HasCrCard', 'IsActiveMember', 'NumOfProducts’, 'Tenure']
2 fig, axarr = plt.subplots(2, 3, figsize=(15, 4))
3 for ind, item in enumerate (attr list):
4 sns.countplot(x = item, hue = "Exited', data = df clean, ax = axarr[ind¥2][ind//2])
5 fig.subplots adjust(hspace=8.7)
~" 1 sec -Command executed in 1 sec 543 ms by Michel Aebischer on 2:08:50 PM, 3/06/24 PySpark (Python)
4000 Exited Exited 4000 Exited
3000 — 4000 — 3000 —r
e -l & = 1 ¥ - ]
= = =
2000 2000
] - R 8
“ H =
. - - - D — I U e
France Spain Germany ] 1 1 2 3 4
Geography HasCrCard NumOfProducts
4000 4000 Exited 800 Exited
== 0 600 -
4+ 3000 a2 3000 - ] o - ]
8 2000 3 2000 3 400
- | - “ LI |
. I n — RN nnNn.
Female Male 0 1 o 1 2 3 4 5 f 7 B 9 10
Gender IsActiveMember Tenure
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Distribution of numerical attributes

Show the the frequency distribution of numerical attributes using histogram.

1 columns = df_num_cols.columns[: len(df_num_cols.columns)]
2 fig = plt.figure()
3 fig.set_size_inches(18, 8)
4 length = len{columns)
5 for i,j in itertools.zip longest(columns, range(length)):
6 plt.subplot((length // 2), 3, j+1)
7 plt.subplots_adjust(wspace = 8.2, hspace = 8.5)
8 df _num_cols[i].hist(bins = 28, edgecolor = 'black’)
9 plt.title(i)
1 # fig = fig.suptitle('distribution of numerical attributes', color = 'r' ,fontsize = 14)
11 plt.show()
~" 1 sec -Command executed in 1 sec 500 ms by Michel Aebischer on 2:08:52 PM, 3/06/24 PySpark (Python)
CreditScore Tenure
1000
1750 1000
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Summary of observations from the exploratory data analysis

* Most of the customers are from France comparing to Spain and Germany, while Spain has the lower churn rate comparing to France and Germany.
* Most of the customers have credit cards.

* There are customers whose age and credit score are above 60 and below 400, respectively, but they can't be considered as outliers.

* Very few customers have more than two of the bank's products.

* Customers who aren't active have a higher churn rate.

* (ender and tenure years don't seem to have an impact on customer's decision to close the bank account.
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And in the end, the predicted results
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Correlation does not imply causation !
Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)

Swimming pool drownings

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
140 drownings 6 films
120 drownings 4 films Z
o,
o,
]
o
!
g
100 drownings ® 2 films ©
80 drownings 0 films
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
=@~ Nicholas Cage  =#= Swimming pool drownings
tylervigen com
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https://www.tylervigen.com/spurious-correlations
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POS - Product Analysis
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